Cell Lines for BBB Modeling

Cell Lines for BBB Modeling

As the most basic unit in biological research, cells have been widely used as the vital study tool of basic research, drug screening, disease models and tissue engineering, thereby providing an important evidence for drug development and treatment. Although traditional animal models can more comprehensively simulate the complexity and specificity of human diseases, they are not easy to conduct a large number of repeated experiments due to the 3R principle and animal ethics issues. Compared with animal models, cell models, as a simple, fast and economical research tool, provide researchers with more opportunities to initially explore the mechanisms of disease and conduct large-scale drug screening.

BBB Models

The blood-brain barrier (BBB) refers to an extremely important histological barrier located in the intima of cerebral blood vessels, which composed of special cells including astrocytes, vascular endothelial cells and pericytes to generate neurovascular units and thereby involved in the regulation of neuronal activity. With the advancement of science and technology, more and more cell lines are used to construct in vitro BBB models. There are several cell lines that are commonly used for modeling the BBB.

  • Brain capillary endothelial cell line (BCEC): The BCEC cell line is derived from brain capillary endothelial cells, which can form tight junctions and express various transporters and enzymes in the blood-brain barrier.
  • Brain microvascular endothelial cell line (BMEC): The BMEC cell line is derived from brain microvascular endothelial cells and has been shown to exhibit multiple characteristics of the blood-brain barrier and can be used alone to create BBB models, such as human brain microvascular endothelial cell line (HBMEC).
  • Astrocyte-derived cell lines: Astrocytes play a critical role in maintaining the integrity and function of the blood-brain barrier and are often used in combination with BCEC or BMEC cell lines to model the BBB.
  • Pericyte-derived cell lines: Pericytes are another important cell type in the blood-brain barrier and are also commonly used in combination with BCEC or BMEC cell lines to model the BBB.

Ace Therapeutics provides hundreds of species, different types of cell lines that can be used alone or in combination to construct the models of BBB to study the behavior, structure and function of the blood-brain barrier, as well as for the development of drug delivery and treatment strategies for neurological diseases.

In addition to single cell lines, we provide multiple 3D coculture BBB models to more accurately represent the BBB, which typically involve a combination of endothelial cells (BCECs or BMECs) with other supporting cells such as astrocytes or pericytes.

Click on the Links to Access Our Cell Lines for BBB Modeling:

Cat.# Name Description Price
BBM-C-167 Human Embryonic Hematopoietic Stem Cell
Human Embryonic Hematopoietic Stem Cells (Plated cells are also available). 120 Population doublings or up to 12 passages. One million viable cells upon thawing of frozen cells, frozen vial of cells shipped in dry-ice. Cells are only guaranteed with the purchase of Ace Therapeutics‘s Media and Ace Therapeutics‘s Extra Cellular Matrix for appropriate cell culture, for 30 days from the date of shipment.
inquiry
BBM-C-168 Human CD34+ Hematopoietic Stem Cell
Human CD34+ Hematopoietic Stem Cell from Bone Marrow (HHSC-BM) or Liver (HHSC-L) contain CD34+ progenitor cells that differentiate into all the various blood cell types. Cells are only guaranteed with the purchase of Ace Therapeutics's Media and Ace Therapeutics's Extra Cellular Matrix for appropriate cell culture, for 30 days from the date of shipment.
inquiry
BBM-C-169 Human Neural Stem Cells-cortex region
Human Neural Stem Cells (HNSC) are self-renewing, generated throughout an adult’s life via neurogenesis. These multipotent adult stem cells generate the main phenotype of the nervous system, differentiating into neurons, astrocytes, and oligodendrocytes. Ace Therapeutics's Human Neural Stem Cells-cortex region are cells derived from the cortex region of human brain (single donor). They are cryopreserved at first passage. Our HNSC stain positive for β-tubulin III, GFAP and oligodendrocyte marker O4 when cultured in Human Neural Differentiation Medium for 10 days. Cells are only guaranteed with the purchase of Ace Therapeutics's Media and Ace Therapeutics's Extra Cellular Matrix for appropriate cell culture, for 30 days from the date of shipment.
inquiry
BBM-C-170 Human Cord Blood-CD34+ Hematopoietic Stem Cell
Human Cord Blood-CD34+ Hematopoietic Stem Cell from Ace Therapeutics are isolated using positive magnetic isolation of CD34 from cord blood. CD34+ cells are targeted using uniform, superparamagnetic polymer beads coated with a primary monoclonal antibody specific for the CD34 membrane antigen predominantly expressed on human hematopoietic progenitor cells and endothelial progenitor cells. The isolated cells are poured off into a new tube and are cryogenically preserved.
inquiry
BBM-C-171 Human Cord Blood CD34/CD133+ Progenitor Cells
CD34 is a well-known marker for primitive and bone marrow-derived progenitor cells, especially for hematopoietic and endothelial progenitors. CD34+ progenitor cells are suitable for a series of studies for directed differentiation into more committed types of blood cells and endothelial lineages. Immediately after isolation, the freshly prepared CD34+ progenitor cells are cryopreserved using a serum-free freezing medium. The majority of CD133+ cells also express CD34. Cord blood CD133+ cells are isolated using direct positive immunomagnetic selection for CD133+ cells. Ace Therapeutics offers CD34+ progenitor cells and CD133 cells in a phenotypically undifferentiated state.
inquiry
BBM-C-172 Human Cord Blood Induced Pluripotent Stem Cell
Cord blood iPSCs induced with non-viral EBNA1-based episomal vector pEV-SFFV-OS. All cell lines are tested to be free of any transgene vector insertion by PCR analysis and thus are authentic footprint-free iPSCs. These lines have all been passaged long-term (up to P30) without differentiation in optimized human iPSC culture media in the presence of inactivated REF or MEF feeder cells. These lines may have greater propensity to differentiate into Hematopoietic Stem Cells (HSCs) or other mesoderm cells due to epigenetic memory. Great cell model systems for any investigative research work including on iPSCs, HSCs, and disease modeling.Vector: pEV-SFFV-Oct4-2A-Sox2.
inquiry
BBM-C-173 Human Umbilical Cord Blood Mononuclear Cells
Human Umbilical Cord Blood Mononuclear Cells are a mixture of various cell populations with a single nucleus, including hematopoietic and mesenchymal stem cells, endothelial progenitor cells, lymphocytes, and monocytes. They can be induced to differentiate into neuron cells, osteoblasts, and lymphocytes. Human Umbilical Cord Blood Mononuclear Cells from Ace Therapeutics are isolated from umbilical cord blood. Cells are isolated by density gradient separation and cryopreserved immediately to ensure the best viability. Human Umbilical Cord Blood Mononuclear Cells are quality tested with less than 2% red blood cells.
inquiry
BBM-C-174 Human Bone Marrow CD133+ Stem/Progenitor Cells
Human Bone Marrow CD133+ Stem/Progenitor Cells from Ace Therapeutics are isolated using positive immunomagnetic cell separation procedures from bone marrow. Capable of a high level of proliferation and a wide range of differentiation, transplantation of bone marrow CD133+ cell lines has been shown to not only induced multilineage human hematopoiesis through the CD34+ lineage but also induce regeneration of cell lines in vitro in multiple locations by differentiating into endothelial cells, neural cells, hepatocytes, osteoblasts, and myocytes, with the list of tissue types this cell can differentiate into gradually increasing.
inquiry
BBM-C-175 Human Endothelial Progenitor Cell
Human endothelial progenitor cells (EPCs) are circulating cells that exhibit a range of cell surface markers comparable to those found on vascular endothelial cells. They encompass primitive endothelial cells that possess enhanced angiogenic and vasculogenic characteristics. These primitive endothelial cells have the remarkable capacity to proliferate and undergo differentiation, ultimately maturing into functional endothelial cells. Human Endothelial Progenitor Cell from Ace Therapeutics can be expanded for up to 120 population doublings or 12 passages, providing ample material for experimentation. They express positive markers such as CD31, CD144, (VEGF)R2, CD146, CD73, CD105, and exhibit the uptake of acetylated low-density lipoprotein. Furthermore, AcceGen provides one million viable cells upon thawing of the frozen vial, which is shipped in dry ice to maintain cell integrity during transportation.
inquiry
BBM-C-176 Reprogrammed Human iPSC Line
Human reprogrammed iPSC Cells established from endothelial progenitor cells that derived from peripheral blood.
inquiry
BBM-C-177 Human iPSC Line (Episomal, PBMC)
Human iPSC Line (Episomal, PBMC) from Ace Therapeutics was derived from human mesenchymal stromal cells (MSCs) by ectopic expression of OCT4, SOX2, KLF4, and L-MYC genes using episomal plasmids.
inquiry
BBM-C-178 Human iPSC Line (Episomal, CB)
The human iPSC line (episomal, CB) from Ace Therapeutics is a type of human induced pluripotent stem cell (iPSC) that was derived from human newborn cord blood (CB) mononuclear cells. The cells were reprogrammed into an embryonic-like pluripotent state using a method involving the introduction of OCT4, SOX2, KLF4, L-MYC, and Lin28 genes through episomal plasmids.
inquiry
BBM-C-179 Human iPSC-Derived Neural Stem Cell
Human iPSC-Derived Neural Stem Cells are a homogeneous and multipotent population derived from control Human Induced Pluripotent Stem Cells.
inquiry
BBM-C-180 Human iPSC-derived Astrocytes
Human iPSC-derived Astrocytes from Ace Therapeutics is derived from integration-free, induced pluripotent stem cells (iPSCs) under fully defined growth conditions using a completely reproducible process.
inquiry
BBM-C-181 Human Mesenchymal Stem Cells from Placenta (hPSCs)
Human Mesenchymal Stem Cells from Placenta (hPSCs) from Ace Therapeutics are human mesenchymal stem cells (hMSC) isolated from placental tissue, specifically from amnion, decidua, or chorion villi. MSC have been shown to differentiate in vitro into adipocytes, chondrocytes, osteoblasts, myocytes, and β-pancreatic islets cells. They can also transdifferentiate into neuronal cells and hepatocytes.
inquiry
All of our products are intended for preclinical research use only and cannot be used to diagnose, treat or manage patients.
0
Inquiry Basket